Proposal of Model and Message Format for Sharing
Information between CSIRTSs and IDSs

Fernando A. Pestana Junior, Zair Abdelouahab, Edson Nascimento

Federal University of Maranhdo
CCET/DEEE
Av dos Portugueses, Campus do Bacanga
Sdo Luis — MA, 65080-040, Brazil
tel: +55 98 3217 8832
fax: +55 98 3217 8241
pestanajunior@hotmail.com, {zair,edson}@dce.ufma.br

Abstract. This article proposes a message format for sharing information be-
tween Computer Security Incident Response Team (CSIRTs) and Intrusion De-
tection Systems (IDSs), aiming the achievement of an automatic update of the
response actiond data base in IDSs, based on restrictive short-term measures
suggested in security alerts issued by CSIRTs. This model is based on Web ser-
vices and Extensible Markup Language (XML) technologies. It is also pre-
sented a data format to these security alerts as an extension of the Common
Alerting Protocol.

Keywords. Intrusion Detection, Web services, Extensible Markup Language

1 Introduction

Intrusion Detection Systems (IDSs) are systems composed of software or hardware
hich automate the monitoring process of events that occur in a computing system or
network, with the aim of identifying signs of security problems [1].

Mechanisms which allow exchanging information between 1DSs and Computer
Security Incident Response Team (CSIRTSs) are necessary. Thus, a better understand-
ing of events surrounding the protected domain, allowing that prevention and re-
sponse measures are taken.

In this work it is proposed a model for sharing information between CSIRTSs ?ﬂd
IDSs, aiming to make possible for IDSs to update automatically its response action
data base, based on short-term restrictive measures suggested in security alert issued
by CSIRTs, using Web services [10] and XML [9] technologies.

The rest of this article is organized this way: Section 2 presents general informa-
tion about Common Intrusion Detection Framework (CIDF) and Common Alerting
Protocol {CAP) which have been used as a basis for this article. In section 3, tl@e ar-
chitecture model for IDSs, as well as its requirements and functionalities. Section 4
presents a model proposal for sharing information between CSIRTs and IDSs, where
a proposal for coding the security alerts in XML is presented. In section 5, the imple-
mentation and tests are described; in section 6, the conclusions are presented.

© A. Gelbukh, C. Yadrez Mdrquez, O. Camacho Nieto (Eds.)
Advances in Artificial Intelligence and Computer Science
Research on Computing Science 14, 2005, pp. 285-296

286 Pestana Junior F., Abdelouaha Z.
2 Background

2.1 Common Intrusion Detection Framework (CIDF)

CIDF [4] is a project by Defense Advanced Research Projects Agency (DARPA) and
one model that represents didactically the operation of an IDS, showing the flow of
information and the basic function of CIDF is shown in Figure 1.

Respense
Unirs

¥

Evert Bverm
A Analyzere Natabnees D box
| S | i
]
'| Gn::un ''''' J
{ Ebox
Netwoik ‘

Fig. 1. Common Intrusion Detection Framework with captor of packets in the network

2.2 Common Alerting Protocol (CAP)

CAP [6] is a simple but general format for exchanging all kinds of emergency alerts.
These emergency alerts should inform people about imminent danger or threats which
can cause some kind of damage. CAP can also be used on all kinds of communication
network, including TCP/IP (Transmission Control Protocol/Internet Protocol).

The main function of alert messages in CAP format is to build a unique message
which has the capacity of activating all kinds of alerting systems. A secondary func-
tion of these messages is to standardize the alerts released by various sources so that
can be aggregated and compared assisting the detection of standards.

3 Sharing Information between IDSs and CSIRTS

According to CIDF, the ability of IDSs and their components to share information
about security incidents is very important and would allow systems to wamn others
about possible imminent attacks [4].

However it would not be safe to allow direct access to the components of an IDS
through an outer entity and thus the introduction of a information share box in the
CIDF architecture would eliminate this direct access and could supply the following
functions necessary to secure this type of application: digital encryption and signa-
ture. Figure 2 shows the information share box (exchange box) added to the CIDF ar-

chitecture.

Proposal of Model and Message Format for Sharing Information 287

X box (sXchange bex)

D box

Aber| Jedaem |-mmmmmmpe——-—-e

¥ |
Fvant
|—-—-—+ oot e].—-——-.—-J.

i E bex

| Tobermation
CSRTs +—» oy '——:
—)
H
4 R box !
Response l
P— Wi :
))
Oarsd ame
1l

Fig. 2. Information Share Box

The information share box will be accountable for searching and receiving alerts
generated by CSIRTs, processing (them) and send its information to the data base
components where the response actions data base will be updated.

In case a new threat or vulnerability is detected, the CSIRT release a security alert,
using a standardized format. IDSs monitor constantly the CSIRTs and as soon as a
new security alert is available, the information share box will recuperate it, update the

response actions database and inform the administrator about possible and necessary
updates to the existing systems.

3.1 Proposal of Application for the Architecture Presented
In Figm:e 3. there is a set of domains monitored by different IDSs.
The information share may be added to existing IDSs, in form of a new box. As

soon as this box is started the domain is integrated to the group of domains which
share security information with a CSIRT.

CSRr1

!gﬁls- M Doment.
BR 0S

nfarmation Niormebon
Agee WI Az
Information nformation

L Dormain 3 -

=
nformation
Sharing

Fig. 3. System architecture

In the example of Figure 3, all domains may send incidents information to CSIRT
which will process them searching for attacks patterns or new vulnerabilities. If a
threat is detected based on analysis of these informations, the CSIRT will generate a
security alert which will be available to all domains.

288 Pestana Jinior F., Abdelouaha Z.

The information share box will be monitoring the CSIRT constantly searching for
security alerts and as soon as it perceives that a new alert is released, this alert will be
recuperated and its information can be used to update the IDS response actions data
base .

In the next section we will specify a standard format for communication messages
between CSIRTs and IDSs.

4 Proposal of a model for information share between CSIRTSs and
IDSs.

In this section a model for information share between CSIRTs and IDSs is proposed,
with the objective of enabling IDSs to automatically update its set of response actions,
based on short-term restrictive measures suggested in security alerts released by
CSIRTs using Web services and XML technologies.

4.1 Response Actions Data Base (RADB)

The RADB contains information about response actions which are to be taken accord-
ing to the attack detected. The scheme of RADB is a representation of the standard
format, proposed to the alerts released by CSIRTs which will be described in this sec-
tion.

A response may be defined as a plan of action which the system has when an intru-
sion is detected [2] and this plan of actions will constitute the RADB. Below the main
response techniques are listed [7]: generate reports, alarms, cancel jobs and cancel
user’s session, investigate suspects, blocking IP addresses, disconnect the host, use a
additional intrusion detection tool, disable ports and services affected, investigate the
connection, create backup and use temporary file for protection.

4.2 Updating RADB based on Alerts released by CSIRTSs

According to Figure 4, a Central Security Agency will be responsible for collecting
alerts released by several CSIRTs, which will have information about new vulner-
abilities detected and they will be available in some standardized format. This share
of information by CSIRT, apart from the current pages in HyperText Markup Lan-
guage (HTML), it may be done by means of Web services and XML which would be
consulted constantly by the Central Security Agency searching for new alerts.

As long as the Central Security Agency receives a new alert released by a CSIRT,
it will be processed and its information will be stored in the RADB.

In figure 4, there are some CSIRTs which emit security alerts and could be used as
information source to update the RADB.

Proposal of Model and Message Format for Sharing Information 289

...............................

-
! SECUNTY ALERTS DATA BASES - C3B s
}
1
1
!

O 0 Cieesel)i

-0 CAE P AarnCERT

CENTRAL SECURITY]
AGENCY

RADS - RESPONSE ACUONS DATA DASE

* Fig. 4. Model for update automatically the response action data base

With the alerts being published in HTML, the security administrator must read all
alerts released and verify which vulnerabilities published are applicable in his envi-
ronment and take the suggested measures in order to stop an intruder’s access to com-
promised systems, limit the extent of an intrusion, and prevent an intruder from caus-
ing further damage [3).

These restrictive short-term measures are exactly the ones which can feed the
RADB, keeping the IDS response mechanism updated and able to respond to security
incidents which involve a new vulnerability described in the alert released by CSIRT.
In order to make it possible is necessary that the attack detection mechanism is also
updated. Updating the attack detection mechanism is out of the scope of this work.

In order to accomplish the information share between CSIRTs and IDSs it is neces-
sary to have an agreement between them about the set of elements which they will use
and know what these elements mean, and what Web services methods they are going
to use, what is the function of these methods and in which order they are called when
more than one method is necessary. .

Apart from these circumstances it is necessary a standard to the CSIRTs securty
alerts and this standard must allow automatic processing. With the standardization the
IDS will not have to understand and decode several formats. Thus, it is proposed an
alert codification format as an extension of CAP.

The structure of this alert message conceming security problems on the Internet
based on the structure of the CAP alert message consists of one segment <alert>
which can contain one or more segments <restriction> and <info>. The segments
<info> will contain one segment <instruction> which in turn may contain one or more
segments <applyPatch>, <removePatch>, <blockAccess>, <disableFeature>, <modi-

fyFile> and <PermissionChange>. That structure is shown in figure 5.

The following extensions were inserted in the structure of the CAP alert message:

- The required element “scope” of the CAP message must have its value deter-
mined as “Restricted”, pointing out that a certain alert is destined to users of
specific systems.

- The optional element “restriction” was redesigned as a required segment
which will point out which systems an alert refers to. Figure 6 shows that al-
teration. ’

- The optional element “instruction” contained in the segment “info” was redes-
igned as a required segment and will contain suggestions of action to be taken.
Figure 7 shows the structure of those elements.

290 Pestana Junior F., Abdelouaha Z.

et jo———| [astriction

Fig. 5. Structure of the alert message for security problems on the Internet.

identifier v platrprm
sender | version

sent name

status oldervers:ons
scope

msgType

references

Fig. 6. Structure of segments “alert” and “restriction”.

jofo 4| instruction ¢~ | 2pplyPatch
event note platform
urgency dissbleSaver version
severty name
certainty patchUrd
;:dem * | removePawch
ngus e
smdu-glem platfarm
headline ;e.r!nneon
:eesbmphon oatchName
contact . * | blockAc
|

seaverName

port

protocol

e | disableFesture

»P—e | saverName
feature

command
note

* | modifyFile
{—— | severName
file
command

note

|

* | permissionChenge
e seaverName command

note

Fig. 7. Structure of elements “info”, “instruction” and extensions.

Proposal of Model and Message Format for Sharing Information 291
4.3 Data Dictionary
Element Definition and Notes or Value Domain

Name

(optionality)

“restriction” Element and Sub-elements

restriction The container for | Multiple occurrences are permitted within a
all component single <alert>.
parts of the restric- | Identifies vulnerable systems.
tion sub-element
of the alert mes-
sage.
(required)
platform The code denoting | Code Values:
the platform name | “Sparc” — Sun Sparc Platform.
of the vulnerable | “x86” - Intel Platform.
system. “Windows” — Microsoft Windows.
(optional) “Solaris” — Sun Solaris.
“Linux” — Linux Platform.
version System version A number or string uniquely identifying the
identification. system version, assigned by the vendor.
(optional) No spaces or restricted characters (< and &).
name The identifier of | A string uniquely identifying the system
the system name. | name, assigned by the vendor.
(required) No spaces or restricted characters (< and &).
olderVersions .| The code denoting | Code Values:
if an alert affects | “Y” - An alert affects all older versions of a
older versions of a | specific system.
specific system. “N” - An alert does not affect all older ver-
(optional) sions of a specific system.

“instruction” Element and Sub-elements

instruction The container for all | Single occurrence permitted within a sin-
component parts of |gle <info> block.
the instruction sub- | In addition to the specified sub-elements,
element of the info | may contain one or more <applyPatch>,
sub-element of the | <removePatch>, <blockAccess>, <dis-
alert message. ableFeature>, <modifyFile>, <permis-
(required) sionChange> blocks.

note The text describing
the recommended
action to be taken by
recipients of the alert
message.

) P

292 Pestana Junior F., Abdelouaha Z.

(required)

disableServer

The group listing of
server names to be
disabled.

Multiple space-delimited server names
may be included. Server names including
white space must be enclosed in double-
quotes.

A string uniquely identifying the server
name, assigned by the vendor.

“applyPatch” Element and Sub-elements

applyPatch The container for Refers to a patch file.
all component parts | Multiple occurrences are permitted within a
of the applyPatch single <instruction> block.
sub-element of the
instruction sub-
element of the info
sub-element of the
alert message.
(optional)
platform The code denoting | Code Values:
the platform name | “Sparc” — Sun Sparc Platform.
of the vuinerable “x86” — Intel Platform.
system. “Windows” — Microsoft Windows.
(optional) “Solaris” — Sun Solaris.
“Linux” — Linux Platform.
version System version A number or string uniquely identifying the
identification. system version, assigned by the vendor.
(optional) No spaces or restricted characters (< and &)
name The identifier of the | A string uniquely identifying the system
system name. name, assigned by the vendor.
(required) No spaces or restricted characters (< and &).
patchUri The identifier of the | A full absolute URI, typically a Uniform
hyperlink for the Resource Locator that can be used to re-
patch file. trieve the patch file over the Internet.
(required)

“removePatch” Element and Sub-elements

removePatch

The container for
all component
parts of the re-
movePatch sub-
element of the in-
struction sub-
element of the info
sub-element of the
alert message.

Refers to an older patch that must be re-
moved before install a new patch.

Multiple occurrences are permitted within a
single <instruction> block.

Proposal of Model and Message Format for Sharing Information

(optional)
platform The code denoting | Code Values:

the platform name | “Sparc” — Sun Sparc Platform.

of the vulnerable {“x86” — Intel Platform.

system. “Windows” — Microsoft Windows.

(optional) “Solaris” — Sun Solaris.

“Linux” — Linux Platform.

version System version A number or string uniquely identifying the

identification. system version, assigned by the vendor.

(optional) No spaces or restricted characters (< and &).
name The identifier of | A string uniquely identifying the system

the system name. | name, assigned by the vendor.

(required) No spaces or restricted characters (< and &).
patchName | The identifier of | A string uniquely identifying the patch

the patch name. name, assigned by the vendor.

(required) No spaces or restricted characters (< and &).

293

“blockAccess” Element and Sub-elements

name.
(required)

blockAccess | The container for all component | Refers to ports and protocols
parts of the blockAccess sub- that must be blocked.
element of the instruction sub- Multiple occurrences are
element of the info sub-element of | permitted within a single
the alert message. <instruction> block.
(optional)
serverName | The identifier of the server where | A string uniquely identifying
ports or protocols will be blocked. | the server name, assigned by
(required) the vendor.
No spaces or restricted char-
acters (<and &).
port The integer from 0 through 65535 | Port numbers assigned by
indicating the port number to be | IANA (Internet Assigned
blocked. Numbers Authority).
(required)
protocol The code denoting the protocol | Code Values:

“Tcp” — Transmission Con-
trol Protocol.

“Udp” — User Datagram Pro-
tocol.

“disableService” Element and Sub-elements

disableService

The container for all component
parts of the disableService sub-
element of the instruction sub-

Identifies a service or fea-
ture of this service that
must be disabled.

294 Pestana Junior F., Abdelouaha Z.

the alert message.
(optional)

element of the info sub-element of | Multiple occurrences are

pt::rmitted within a single
<instruction> block.

serverName

The identifier of the server where
a service will be disabled.
(required)

A string uniquely identify-
ing the server name, as-
signed by the vendor.

No spaces or restricted
characters (< and &).

service

The identifier of the service that
will be disabled.
(required)

f\ string uniquely identify-
ing the service or a feature
of this service, assigned by
the vendor.

No spaces or restricted
characters (< and &).

command

The text describing a command

or a feature of this service.

and its options to disable a service

note

The text describing the service or
a feature of this service to be dis-
abled and probably impacts of

these actions.

“modifyFile” Element and Sub-elements

modifyFile

The container for all component

parts of the modifyFile sub-
element of the instruction sub-
element of the info sub-element

of the alert message.
(optional)

Refers to a file name with its
full path. Typically a configu-
ration file.

Multiple occurrences are per-
mitted within a single <in-
struction> block.

serverName

The identifier of the server
where a file or files will be
modified.
(required)

A string uniquely identifying
the server name, assigned by
the vendor. -

No spaces or restricted charac-
ters (< and &).

file

File name with its full path.
(required)

command

Text describing the necessary
command to modify a file. (op-
tional)

M}Jltiple occurrences are per-
mitted within a single <modi-
fyFile> block.

note

Text describing the command
and probably impacts of its ac-
tions.

(optional)

Proposal of Model and Message Format for Sharing Information

“permissionChange” Element and Sub-elements

295

permissionChange

The container for all component
parts of the permissionChange
sub-element of the instruction
sub-element of the info sub-
element of the alert message.
(optional)

Used to modify directory
or file access permission.
Multiple occurrences are
permitted within a single
<instruction> block.

serverName The identifier of the server A string uniquely identify-
where directory or file access ing the server name, as-
permission will be modified. signed by the vendor.
(required) No spaces or restricted

characters (< and &).

command Text describing the necessary Multiple occurrences are
command to modify a user per- | permitted within a single
mission to access directories or | <permissionChange>
files. block.
(required)

note Text describing the command

and probably impacts of its ac-
tions,
(optional)

S NIDIA System

NIDIA is a proposal of a multiagent [8] IDS, able to analyze data from hosts logs and
network traffic packets to generate an attack suspicion level to the protected network.
The NIDIA architecture is inspired in the CIDF logical model, and has agents act-

ing as event generators (sensor agents), data analysis mechanisms (system monitoring
and security evaluation agents) and response module (system controller agent). Apart
from that, there are agents accountable for system integrity (system integrity agent)
and system update (system update agent).

There are also databases to store its security policy strategy (STDB), the response
actions to be taken in case of suspicious activity (RADB), intrusion and intruder pat-
terns (1IDB) and a database to store intrusion data (DFDB).

Aiming to keep the response actions database updated, the System Updating Agent
was implemented in accordance with the multiagent architecture proposed in (5] for
NIDIA System. This agent will work as Central Security Agency, as described in sec-
tion 4.2.

In order to test, a prototype representing a CSIRT was implemented, which makes
available through web service several security alerts. A database was developed for
this prototype and it was constantly updated with CERT®/CC vulnerability notes re-
leased in 2004.

Through these implementations was possible to maintain updated the NIDIA re-
sponse actions data base. The System Updating Agent constantly sent requests to the

296 Pestana Jiunior F., Abdelouaha Z.

prototype of CSRIT which processes them and in case there was a new alert, it was
sent to NIDIA in XML format.

After that, intrusion tests were made on the network protected by NIDIA. As soon
as the invasions were detected, the system controller agent responded according to the

data updated and stored in RADB.

6 Conclusion

With daily discovery of new threats and vulnerabilities in computing systems, updat-

ing IDS becomes a constant woITy.
This work proposes to inform how to keep the Response Actions Data Base

(RADB) updated through information share between IDSs and CSIRTs.
However, in order to occur this information share it is necessary a standard to for-
mat the alert data, which was proposed as an extension of Common Alerting Protocol
CAP).
(Using prototypes, based on society of intelligent agents, Web services and Exten-
sible Markup Language — XML technologies, it was possible establish information
share and keep the RADB update, which proves viability of the model herein pre-

sented.

References

1. Bace, Rebecca; Mell, Peter. Intrusion Detection Systems. NIST Special Publication, SP800-
31, (1999). ’
ley. Intrusion Detection. Macmillan Technical Publishing, (1999).

2. Bace, Rebecca Gur
3. Carnegie Mellon University / Software Engineering Institute. Responding to Intrusions

CMU/SEI-SIM-006, February (1999).
4. CIDF Working Group. The Common Intrusion Detection Framework Architecture. Draft

CIDF (1998).
5. Lima, C. F. L. et al. The NIDIA Project Network Intrusion Detection System based on Intel-
ligent Agents. Proceedings of Tenth Latin-Ibero-American Congress on Operations Re-
o City, Mexico (2000), pp. 212-217.

search and Systems. Mexic
6. Organization for the Advancement of Structured Information Standards. Common Alerting

Protocol, v. 1.0. OASIS Standard 200402 (2004).
7. Santos, G. de L. F.; Nascimento, E.. An Automated Response Approach for Intrusion Detec-

tion Security Enhancement. Proceedings of VII International Conference on Software Engi-
neering and Applications. Marina Del Rey, California, USA (2003).
8. Weiss, Gerhard; Multiagent Systems - A Modern Approach to Distributed Artificial Intelli-
ence, The MIT Press - Cambridge, Massachusetts, London, England (1999).
9. World Wide Web Consortium. Extensible Markup Language (XML) 1.1. April (2004)
10. World Wide Web Consortium. Web Services Architecture. February (2004). .

